Source code for poi_interlinking.config

# Author: vkaff
# E-mail: vkaffes@imis.athena-innovation.gr

import numpy as np
from scipy.stats import randint as sp_randint, expon, truncnorm


default_data_path = 'data'
freq_term_size = 400

# fieldnames = ["s1", "s2", "status", "c1", "c2", "a1", "a2", "cc1", "cc2"]
fieldnames = None
use_cols = dict(
    ID1='ID1', ID2='ID2',
    s1='Name1', s2='Name2', addr1='Address1', addr2='Address2',
    lon1='st_x1', lat1='st_y1', lon2='st_x2', lat2='st_y2',
    status='Class'
)
delimiter = ','

# #: Relative path to the train dataset. This value is used only when the *dtrain* cmd argument is None.
# train_dataset = 'data/dataset-string-similarity_global_1k.csv'
# # train_dataset = 'data/dataset-string-similarity_latin_EU_NA_1k.txt'
# # train_dataset = 'data/dataset-string-similarity-100.csv'
#
# #: Relative path to the test dataset. This value is used only when the *dtest* cmd argument is None.
# test_dataset = 'data/dataset-string-similarity.txt'

#: float: Similarity threshold on whether sorting on toponym tokens is applied or not. It is triggered on a score
#: below the assigned threshold.
sort_thres = 0.55

#: int: Seed used by each of the random number generators.
seed_no = 13

test_size = 0.2

save_intermediate_results = False


[docs]class MLConf: """ This class initializes parameters that correspond to the machine learning part of the framework. These variables define the parameter grid for GridSearchCV: :cvar SVM_hyperparameters: Defines the search space for SVM. :vartype SVM_hyperparameters: :obj:`list` :cvar MLP_hyperparameters: Defines the search space for MLP. :vartype MLP_hyperparameters: :obj:`dict` :cvar DecisionTree_hyperparameters: Defines the search space for Decision Trees. :vartype DecisionTree_hyperparameters: :obj:`dict` :cvar RandomForest_hyperparameters: Defines the search space for Random Forests and Extra-Trees. :vartype RandomForest_hyperparameters: :obj:`dict` :cvar XGBoost_hyperparameters: Defines the search space for XGBoost. :vartype XGBoost_hyperparameters: :obj:`dict` These variables define the parameter grid for RandomizedSearchCV where continuous distributions are used for continuous parameters (whenever this is feasible): :cvar SVM_hyperparameters_dist: Defines the search space for SVM. :vartype SVM_hyperparameters_dist: :obj:`dict` :cvar MLP_hyperparameters_dist: Defines the search space for MLP. :vartype MLP_hyperparameters_dist: :obj:`dict` :cvar DecisionTree_hyperparameters_dist: Defines the search space for Decision Trees. :vartype DecisionTree_hyperparameters_dist: :obj:`dict` :cvar RandomForest_hyperparameters_dist: Defines the search space for Random Forests and Extra-Trees. :vartype RandomForest_hyperparameters_dist: :obj:`dict` :cvar XGBoost_hyperparameters_dist: Defines the search space for XGBoost. :vartype XGBoost_hyperparameters_dist: :obj:`dict` """ kfold_no = 5 """int: The number of outer folds that splits the dataset for the k-fold cross-validation. """ #: int: The number of inner folds that splits the dataset for the k-fold cross-validation. kfold_inner_parameter = 4 n_jobs = 4 #: int: Number of parallel jobs to be initiated. -1 means to utilize all available processors. classification_method = 'lgm' """str: The classification group of features to use. (*basic* | *basic_sorted* | *lgm*). See Also -------- :class:`~poi_interlinking.processing.features.Features` : Details on the supported groups. """ # accepted values: randomized, grid, hyperband - not yet implemented!!! hyperparams_search_method = 'grid' """str: Search Method to use for finding best hyperparameters. (*randomized* | *grid*). See Also -------- :meth:`~poi_interlinking.learning.hyperparam_tuning.ParamTuning.fineTuneClassifiers` : Details on the supported methods. """ #: int: Number of iterations that RandomizedSearchCV should execute. It applies only when #: :attr:`hyperparams_search_method` equals to 'randomized'. max_iter = 300 #: int: Number of ranked features to print max_features_to_show = 10 classifiers = [ # 'SVM', # 'DecisionTree', 'RandomForest', # 'ExtraTrees', # 'XGBoost', # 'MLP' ] """list of str: Define the classifiers to apply on code execution. Accepted values are: - SVM - DecisionTree - RandomForest - ExtraTrees - XGBoost - MLP. """ # score = 'roc_auc_ovr_weighted' score = 'roc_auc' """str: The metric to optimize on hyper-parameter tuning. Possible valid values presented on `Scikit predefined values`_. .. _Scikit predefined values: https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values """ clf_custom_params = { 'SVM': { # default # 'C': 1.0, 'max_iter': 3000, # best 'C': 100, 'class_weight': 'balanced', 'gamma': 0.01, 'kernel': 'sigmoid', 'max_iter': 10000, 'random_state': seed_no }, 'DecisionTree': { # default # 'max_depth': 100, 'max_features': 'auto', # best 'class_weight': {0: 1, 1: 3}, 'max_depth': 50, 'max_features': 8, 'min_samples_leaf': 10, 'min_samples_split': 10, 'splitter': 'best', 'random_state': seed_no, }, 'RandomForest': { # default # 'n_estimators': 300, 'max_depth': 100, 'oob_score': True, 'bootstrap': True, # best 'class_weight': {0: 1, 1: 5}, 'criterion': 'gini', 'max_depth': 1700, 'max_features': 'sqrt', 'min_samples_split': 8, 'n_estimators': 50, 'random_state': seed_no, 'n_jobs': n_jobs, # 'oob_score': True, }, 'ExtraTrees': { # default # 'n_estimators': 300, 'max_depth': 100, # best 'class_weight': {0: 1, 1: 3}, 'criterion': 'entropy', 'max_depth': 1200, 'max_features': 'sqrt', 'min_samples_split': 8, 'n_estimators': 10, 'random_state': seed_no, 'n_jobs': n_jobs }, 'XGBoost': { # default # 'n_estimators': 3000, # best 'max_delta_step': 2, 'max_depth': 5, 'n_estimators': 15, 'subsample': 0.5, 'seed': seed_no, 'nthread': n_jobs }, 'MLP': { # default # 'tol': 0.0001, 'learning_rate_init': 0.06794912926673598, 'max_iter': 1000, 'activation': 'logistic', # 'solver': 'lbfgs', # best 'activation': 'relu', 'hidden_layer_sizes': (50, 50), 'learning_rate_init': 0.05, 'max_iter': 10000, 'solver': 'sgd', 'tol': 0.0001, 'random_state': seed_no, }, } sim_opt_params = { 'latin': { # Only latin dataset 100k lines 'damerau_levenshtein': {'simple': [0.6, [0.7, 0.1, 0.2]], 'avg': [0.8, [0.5, 0.2, 0.3]]}, 'jaro': {'simple': [0.6, [0.7, 0.1, 0.2]], 'avg': [0.9, [0.7, 0.1, 0.2]]}, 'jaro_winkler': {'simple': [0.8, [0.7, 0.1, 0.2]], 'avg': [0.9, [0.6, 0.1, 0.3]]}, 'jaro_winkler_r': {'simple': [0.6, [0.7, 0.1, 0.2]], 'avg': [0.8, [0.7, 0.1, 0.2]]}, # 'permuted_winkler': [], # 'sorted_winkler': [], 'cosine': {'simple': [0.6, [0.6, 0.2, 0.2]], 'avg': [0.9, [0.4, 0.2, 0.4]]}, 'jaccard': {'simple': [0.6, [0.6, 0.1, 0.3]], 'avg': [0.9, [0.3, 0.3, 0.4]]}, 'strike_a_match': {'simple': [0.6, [0.6, 0.1, 0.3]], 'avg': [0.9, [0.5, 0.1, 0.4]]}, 'skipgram': {'simple': [0.6, [0.6, 0.2, 0.2]], 'avg': [0.9, [0.3, 0.3, 0.4]]}, 'monge_elkan': {'simple': [0.6, [0.7, 0.2, 0.1]], 'avg': [0.9, [0.6, 0.1, 0.3]]}, 'soft_jaccard': {'simple': [0.8, [0.6, 0.1, 0.3]], 'avg': [0.9, [0.5, 0.1, 0.4]]}, 'davies': {'simple': [0.8, [0.7, 0.1, 0.2]], 'avg': [0.9, [0.6, 0.1, 0.3]]}, 'tuned_jaro_winkler': {'simple': [0.8, [0.7, 0.1, 0.2]], 'avg': [0.9, [0.6, 0.1, 0.3]]}, 'tuned_jaro_winkler_r': {'simple': [0.6, [0.7, 0.1, 0.2]], 'avg': [0.8, [0.7, 0.1, 0.2]]}, }, 'global': { 'damerau_levenshtein': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.8, [0.4, 0.5, 0.1]]}, 'jaro': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.8, [0.4, 0.5, 0.1]]}, 'jaro_winkler': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.6, [0.4, 0.5, 0.1]]}, 'jaro_winkler_r': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.8, [0.4, 0.5, 0.1]]}, # 'permuted_winkler': [], # 'sorted_winkler': [], 'cosine': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.6, [0.4, 0.5, 0.1]]}, 'jaccard': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.6, [0.4, 0.5, 0.1]]}, 'strike_a_match': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.65, [0.4, 0.5, 0.1]]}, 'skipgram': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.6, [0.4, 0.5, 0.1]]}, 'monge_elkan': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.6, [0.4, 0.5, 0.1]]}, 'soft_jaccard': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.7, [0.4, 0.5, 0.1]]}, 'davies': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.7, [0.4, 0.5, 0.1]]}, 'tuned_jaro_winkler': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.6, [0.4, 0.5, 0.1]]}, 'tuned_jaro_winkler_r': {'simple': [0.6, [0.4, 0.5, 0.1]], 'avg': [0.8, [0.4, 0.5, 0.1]]}, } } # These parameters constitute the search space for GridSearchCV in our experiments. SVM_hyperparameters = [ { 'kernel': ['rbf', 'sigmoid'], 'gamma': [1e-2, 1e-3, 1, 5, 10, 'scale'], 'C': [0.01, 0.1, 1, 10, 25, 50, 100, 300], 'max_iter': [10000], 'class_weight': ['balanced', {0: 1, 1: 3}, {0: 1, 1: 5}], }, { 'kernel': ['poly'], 'degree': [1, 2, 3], 'gamma': ['scale', 'auto'], 'C': [0.01, 0.1, 1, 10, 25, 50, 100], 'max_iter': [30000], 'class_weight': ['balanced', {0: 1, 1: 3}, {0: 1, 1: 5}], }, ] DecisionTree_hyperparameters = { 'max_depth': [2, 3, 5, 10, 30, 50, 60, 80, 100], 'min_samples_split': [2, 5, 10, 20, 50, 100], 'min_samples_leaf': [1, 2, 4, 10], 'max_features': list(np.arange(2, 11, 2)) + ["sqrt", "log2"], 'splitter': ['best', 'random'], 'class_weight': ['balanced', {0: 1, 1: 3}, {0: 1, 1: 5}], } RandomForest_hyperparameters = { # 'bootstrap': [True, False], 'max_depth': [500, 1000, 1200, 1500, 1700, 1800, 2000], "n_estimators": [20, 30, 50, 80, 100, 250, 500], 'criterion': ['gini', 'entropy'], 'max_features': ['log2', 'sqrt'], # auto is equal to sqrt # 'min_samples_leaf': [1, 2, 4, 10], 'min_samples_split': [3, 5, 6, 8, 10], 'class_weight': ['balanced', {0: 1, 1: 3}, {0: 1, 1: 5}], } XGBoost_hyperparameters = { # "n_estimators": [50, 70, 100, 500, 1000, 3000], # 'max_depth': [3, 5, 10, 30, 50, 70, 100], "n_estimators": [5, 10, 15, 20, 50, 70, 100], 'max_depth': [2, 3, 5, 7, 8, 10, 20, 30], # hyperparameters to avoid overfitting # 'eta': list(np.linspace(0.01, 0.2, 10)), # 'learning_rate' # 'gamma': [0, 1, 5], 'subsample': [0.4, 0.5, 0.6, 0.7], # # Values from 0.3 to 0.8 if you have many columns (especially if you did one-hot encoding), # # or 0.8 to 1 if you only have a few columns # 'colsample_bytree': list(np.linspace(0.8, 1, 3)), # 'min_child_weight': [1, 5, 10], # 'scale_pos_weight': [1, 2, 3, 5], 'max_delta_step': [1, 2, 3, 5], } MLP_hyperparameters = { 'hidden_layer_sizes': [(100,), (50, 50,)], 'learning_rate_init': [0.005, 0.01, 0.05, 0.1], 'max_iter': [10000], 'solver': ['lbfgs', 'sgd', 'adam'], 'activation': ['identity', 'logistic', 'tanh', 'relu'], 'tol': [1e-3, 1e-4], } # These parameters constitute the search space for RandomizedSearchCV in our experiments. SVM_hyperparameters_dist = { 'C': expon(scale=100), 'gamma': expon(scale=.1), 'kernel': ['rbf'], 'class_weight': ['balanced'], 'max_iter': [10000] } DecisionTree_hyperparameters_dist = { 'max_depth': sp_randint(10, 200), 'min_samples_split': sp_randint(2, 200), 'min_samples_leaf': sp_randint(1, 10), 'max_features': sp_randint(1, 11), 'class_weight': ['balanced'] + [{0: 1, 1: w} for w in range(1, 5)], } RandomForest_hyperparameters_dist = { # 'bootstrap': [True, False], 'max_depth': sp_randint(3, 200), 'criterion': ['gini', 'entropy'], 'max_features': ['sqrt', 'log2'], # sp_randint(1, 11) 'min_samples_leaf': sp_randint(1, 10), 'min_samples_split': sp_randint(2, 30), "n_estimators": sp_randint(200, 1000), 'class_weight': ['balanced'] + [{0: 1, 1: w} for w in range(1, 5)], } XGBoost_hyperparameters_dist = { "n_estimators": sp_randint(50, 4000), 'max_depth': sp_randint(3, 200), # 'eta': expon(loc=0.01, scale=0.1), # 'learning_rate' # hyperparameters to avoid overfitting 'gamma': sp_randint(0, 5), # 'subsample': truncnorm(0.7, 1), 'subsample': truncnorm(0.4, 0.7), # 'colsample_bytree': truncnorm(0.8, 1), # 'min_child_weight': sp_randint(1, 10), # 'scale_pos_weight': sp_randint(1, 5), 'max_delta_step': sp_randint(1, 5), "reg_alpha": truncnorm(0, 2), 'reg_lambda': sp_randint(1, 20), } MLP_hyperparameters_dist = { 'hidden_layer_sizes': [(100,), (50, 50,)], 'learning_rate_init': expon(loc=0.0001, scale=0.1), 'max_iter': [10000], 'solver': ['lbfgs', 'sgd', 'adam'], 'activation': ['identity', 'logistic', 'tanh', 'relu'], 'tol': [1e-3, 1e-4], }