Source code for polygon_classification.config

# Author: vkaff
# E-mail: vkaffes@imis.athena-innovation.gr

import numpy as np
from scipy.stats import randint as sp_randint, expon, truncnorm


#: str: Relative path to the datasets.
dataset = 'data/polypairs_dataset.csv'

#: int: Seed used by each of the random number generators.
seed_no = 2020

#: float: Proportion of the dataset to include in the test split. Accepted values should be between 0.0 and 1.0.
test_split_thres = 0.2


[docs]class MLConf: """ This class initializes parameters that correspond to the machine learning part of the framework. These variables define the parameter grid for GridSearchCV: :cvar SVM_hyperparameters: Defines the search space for SVM. :vartype SVM_hyperparameters: :obj:`list` :cvar MLP_hyperparameters: Defines the search space for MLP. :vartype MLP_hyperparameters: :obj:`dict` :cvar DecisionTree_hyperparameters: Defines the search space for Decision Trees. :vartype DecisionTree_hyperparameters: :obj:`dict` :cvar RandomForest_hyperparameters: Defines the search space for Random Forests and Extra-Trees. :vartype RandomForest_hyperparameters: :obj:`dict` :cvar XGBoost_hyperparameters: Defines the search space for XGBoost. :vartype XGBoost_hyperparameters: :obj:`dict` These variables define the parameter grid for RandomizedSearchCV where continuous distributions are used for continuous parameters (whenever this is feasible): :cvar SVM_hyperparameters_dist: Defines the search space for SVM. :vartype SVM_hyperparameters_dist: :obj:`dict` :cvar MLP_hyperparameters_dist: Defines the search space for MLP. :vartype MLP_hyperparameters_dist: :obj:`dict` :cvar DecisionTree_hyperparameters_dist: Defines the search space for Decision Trees. :vartype DecisionTree_hyperparameters_dist: :obj:`dict` :cvar RandomForest_hyperparameters_dist: Defines the search space for Random Forests and Extra-Trees. :vartype RandomForest_hyperparameters_dist: :obj:`dict` :cvar XGBoost_hyperparameters_dist: Defines the search space for XGBoost. :vartype XGBoost_hyperparameters_dist: :obj:`dict` """ kfold_parameter = 5 #: int: The number of outer folds that splits the dataset for the k-fold cross-validation. n_jobs = -1 #: int: Number of parallel jobs to be initiated. -1 means to utilize all available processors. #: bool: Whether to build additional features or not, i.e., convex hull of polygons and dist of centroids. extra_features = True # accepted values: randomized, grid, hyperband - not yet implemented!!! hyperparams_search_method = 'randomized' """str: Search Method to use for finding best hyperparameters. (*randomized* | *grid*). See Also -------- :func:`~polygon_classification.param_tuning.ParamTuning.fineTuneClassifiers`. Details on available inputs. """ #: int: Number of iterations that RandomizedSearchCV should execute. It applies only when #: :attr:`hyperparams_search_method` equals to 'randomized'. max_iter = 3 score = 'accuracy' """str: The metric to optimize on hyper-parameter tuning. Possible valid values presented on `Scikit predefined values`_. .. _Scikit predefined values: https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values """ classifiers = [ # 'SVM', # 'DecisionTree', 'RandomForest', # 'ExtraTrees', # 'XGBoost', # 'MLP' ] """list of str: Define the classifiers to apply on code execution. Accepted values are: - SVM - DecisionTree - RandomForest - ExtraTrees - XGBoost - MLP. """ clf_custom_params = { 'SVM': { # with scaler # basic/extra 'C': 200, 'class_weight': 'balanced', 'gamma': 10, 'max_iter': 10000, # 'kernel': 'rbf', 'tol': 0.001 }, 'DecisionTree': { # 'min_samples_leaf': 0.10218472045491575, 'min_samples_split': 0.46848801022523695, 'max_features': 10, # 'class_weight': {1: 1, 4: 9}, 'max_depth': 70, # with scaler # 'max_features': 10, 'min_samples_leaf': 0.13084191454406335, 'class_weight': {1: 1, 4: 2}, 'max_depth': 79, # 'min_samples_split': 0.7040970996893269, # basic # 'min_samples_leaf': 0.13896623393837215, 'class_weight': {1: 1, 4: 7}, 'max_depth': 42, 'max_features': 5, # 'min_samples_split': 0.21705549723971926, # extra 'class_weight': {1: 1, 4: 2}, 'max_depth': 80, 'max_features': 10, 'min_samples_leaf': 2, 'min_samples_split': 10, # 'splitter': 'best', }, 'RandomForest': { # with scaler # basic # 'max_depth': 62, 'min_samples_split': 2, 'n_estimators': 553, 'max_features': 'sqrt', 'bootstrap': False, # 'criterion': 'entropy', 'min_samples_leaf': 2, 'class_weight': {1: 1, 4: 7}, # extra 'class_weight': {1: 2, 4: 1}, 'criterion': 'entropy', 'max_depth': 100, 'n_estimators': 1000, # 'min_samples_split': 2, # 'random_state': seed_no, 'n_jobs': n_jobs, # 'oob_score': True, }, 'ExtraTrees': { # with scaler # basic # 'max_depth': 71, 'bootstrap': False, 'criterion': 'gini', 'class_weight': {1: 1, 4: 1}, # 'min_samples_leaf': 1, 'max_features': 'sqrt', 'min_samples_split': 7, 'n_estimators': 776, # extra 'class_weight': {1: 2, 4: 1}, 'max_depth': 100, # 'random_state': seed_no, 'n_jobs': n_jobs }, 'XGBoost': { # with scaler # basic # 'n_estimators': 2549, 'min_child_weight': 1, 'max_depth': 62, 'scale_pos_weight': 1, # 'colsample_bytree': 0.598605740971479, 'gamma': 1, 'eta': 0.17994840726392214, # 'subsample': 0.7250606565532803, # extra 'max_depth': 72, 'n_estimators': 21, 'scale_pos_weight': 3, # 'random_state': seed_no, 'nthread': n_jobs, 'objective': "binary:logistic", }, 'MLP': { # with scaler # basic # 'activation': 'logistic', 'solver': 'lbfgs', 'max_iter': 1000, 'tol': 0.0001, # 'learning_rate_init': 0.16533315728128767, # extra # 'activation': 'relu', 'hidden_layer_sizes': (100,), 'learning_rate_init': 0.05, 'max_iter': 5000, 'solver': 'lbfgs', 'tol': 0.003, } } # These parameters constitute the search space for GridSearchCV in our experiments. SVM_hyperparameters = [ { 'kernel': ['rbf', 'sigmoid'], 'gamma': [1e-2, 0.1, 1, 5, 10, 30, 'scale'], 'C': [0.01, 0.1, 1, 10, 100, 200, 300], 'tol': [1e-3, 1e-2], # 'probability': [True, False], 'max_iter': [5000], 'class_weight': [None, 'balanced', {1: 2, 4: 1}, {1: 3, 4: 1}], }, { 'kernel': ['poly'], 'gamma': ['auto', 'scale', 1, 10, 30], 'C': [0.01, 0.1, 1, 10, 100, 200, 300], 'degree': [1, 2, 3], # degree=1 is the same as using a 'linear' kernel 'tol': [1e-3, 1e-2], # 'probability': [True, False], 'max_iter': [5000], 'class_weight': [None, 'balanced', {1: 2, 4: 1}, {1: 3, 4: 1}], }, # {'kernel': ['linear'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'max_iter': [3000]} ] DecisionTree_hyperparameters = { 'max_depth': [2, 3, 5, 10, 30, 50, 60, 80, 100], 'min_samples_split': [2, 4, 6, 10, 15, 25, 50], 'min_samples_leaf': [1, 2, 4, 10], # 'min_samples_split': list(np.linspace(0.1, 1, 10)), # 'min_samples_leaf': list(np.linspace(0.1, 0.5, 5)), 'max_features': list(np.arange(2, 11, 2)) + ["sqrt", "log2"], 'splitter': ['best', 'random'], 'class_weight': [None, 'balanced', {1: 2, 4: 1}, {1: 3, 4: 1}], } RandomForest_hyperparameters = { # 'bootstrap': [True, False], 'max_depth': [5, 10, 20, 50, 70, 100], 'criterion': ['gini', 'entropy'], # 'max_features': ['log2', 'sqrt'], # auto is equal to sqrt # 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 3, 5], "n_estimators": [100, 120, 200, 250], 'class_weight': [None, 'balanced', {1: 2, 4: 1}, {1: 3, 4: 1}], } XGBoost_hyperparameters = { "n_estimators": [20, 30, 100, 300], # 'eta': list(np.linspace(0.01, 0.2, 10)), # 'learning_rate' ## avoid overfitting # Control the model complexity 'max_depth': [10, 30, 50, 70, 100], 'gamma': [0, 1, 5], # 'reg_alpha': [1, 10], # Add randomness to make training robust to noise 'subsample': [0.8, 0.9, 1], # 'colsample_bytree': list(np.linspace(0.8, 1, 3)), # for class imbalances, setting the parameters # *) 'max_delta_step', # *) 'min_child_weight' and # *) 'scale_pos_weight' # could help 'scale_pos_weight': [1, 2, 3], # 'min_child_weight': [1, 5, 10], } MLP_hyperparameters = { 'hidden_layer_sizes': [(100,), (50, 50,)], 'learning_rate_init': [0.0001, 0.005, 0.01, 0.05, 0.1], 'max_iter': [3000], 'solver': ['lbfgs', 'sgd', 'adam'], 'activation': ['identity', 'logistic', 'tanh', 'relu'], 'tol': [1e-3, 1e-4], } # These parameters constitute the search space for RandomizedSearchCV in our experiments. SVM_hyperparameters_dist = { 'C': expon(scale=100), 'gamma': expon(scale=.1), 'kernel': ['rbf', 'poly', 'sigmoid'], 'class_weight': ['balanced', None] + [{1: w, 4: 1} for w in range(1, 5)], 'degree': [1, 2, 3], 'tol': [1e-3, 1e-2], 'max_iter': [10000] } DecisionTree_hyperparameters_dist = { 'max_depth': sp_randint(10, 200), 'min_samples_split': sp_randint(2, 200), 'min_samples_leaf': sp_randint(1, 10), 'max_features': sp_randint(1, 11), 'class_weight': [None, 'balanced'] + [{1: w, 4: 1} for w in range(1, 5)], } RandomForest_hyperparameters_dist = { # 'bootstrap': [True, False], 'max_depth': sp_randint(3, 200), 'criterion': ['gini', 'entropy'], 'max_features': ['sqrt', 'log2'], # sp_randint(1, 11) 'min_samples_leaf': sp_randint(1, 10), 'min_samples_split': sp_randint(2, 21), "n_estimators": sp_randint(250, 1000), 'class_weight': ['balanced', None] + [{1: w, 4: 1} for w in range(1, 5)], } XGBoost_hyperparameters_dist = { "n_estimators": sp_randint(20, 200), # 'eta': expon(loc=0.01, scale=0.1), # 'learning_rate' # hyperparameters to avoid overfitting 'max_depth': sp_randint(10, 200), 'gamma': sp_randint(0, 5), 'subsample': truncnorm(0.4, 0.7), # 'colsample_bytree': truncnorm(0.8, 1), # 'min_child_weight': sp_randint(1, 10), 'scale_pos_weight': sp_randint(1, 5), "reg_alpha": truncnorm(0, 2), 'reg_lambda': sp_randint(1, 20), } MLP_hyperparameters_dist = { 'hidden_layer_sizes': [(100,), (50, 50,)], 'learning_rate_init': expon(loc=0.0001, scale=0.1), 'max_iter': [3000], 'solver': ['lbfgs', 'sgd', 'adam'], 'activation': ['identity', 'logistic', 'tanh', 'relu'], 'tol': [1e-3, 1e-4], }