config¶
polygon_classification.config.dataset= 'data/polypairs_dataset.csv'¶Relative path to the datasets.
- Type
str
polygon_classification.config.seed_no= 2020¶Seed used by each of the random number generators.
- Type
int
polygon_classification.config.test_split_thres= 0.2¶Proportion of the dataset to include in the test split. Accepted values should be between 0.0 and 1.0.
- Type
float
- class
polygon_classification.config.MLConf[source]¶This class initializes parameters that correspond to the machine learning part of the framework.
These variables define the parameter grid for GridSearchCV:
- Variables
SVM_hyperparameters (
list) – Defines the search space for SVM.MLP_hyperparameters (
dict) – Defines the search space for MLP.DecisionTree_hyperparameters (
dict) – Defines the search space for Decision Trees.RandomForest_hyperparameters (
dict) – Defines the search space for Random Forests and Extra-Trees.XGBoost_hyperparameters (
dict) – Defines the search space for XGBoost.These variables define the parameter grid for RandomizedSearchCV where continuous distributions are used for continuous parameters (whenever this is feasible):
- Variables
SVM_hyperparameters_dist (
dict) – Defines the search space for SVM.MLP_hyperparameters_dist (
dict) – Defines the search space for MLP.DecisionTree_hyperparameters_dist (
dict) – Defines the search space for Decision Trees.RandomForest_hyperparameters_dist (
dict) – Defines the search space for Random Forests and Extra-Trees.XGBoost_hyperparameters_dist (
dict) – Defines the search space for XGBoost.
kfold_parameter= 5¶The number of outer folds that splits the dataset for the k-fold cross-validation.
- Type
int
n_jobs= -1¶Number of parallel jobs to be initiated. -1 means to utilize all available processors.
- Type
int
extra_features= True¶Whether to build additional features or not, i.e., convex hull of polygons and dist of centroids.
- Type
bool
hyperparams_search_method= 'randomized'¶Search Method to use for finding best hyperparameters. (randomized | grid).
See also
- Type
str
max_iter= 3¶Number of iterations that RandomizedSearchCV should execute. It applies only when
hyperparams_search_methodequals to ‘randomized’.
- Type
int
score= 'accuracy'¶The metric to optimize on hyper-parameter tuning. Possible valid values presented on Scikit predefined values.
- Type
str
classifiers= ['RandomForest']¶Define the classifiers to apply on code execution. Accepted values are:
SVM
DecisionTree
RandomForest
ExtraTrees
XGBoost
MLP.
- Type
list of str